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Abstract

The Holodeck, a virtual reality simulator from the television
show Star Trek, is known as the “holy grail” of interactive
narrative experiences. However, while there have been ap-
proaches to various components of a theoretical Holodeck,
scene generation from dialogue is often overlooked. This pa-
per introduces a prototype AI Holodeck application for scene
generation, demonstrating the use of Natural Language Pro-
cessing and a corpus of spatial data. The application creates
scenes from user input text and fills those scenes with objects
and relationships not explicitly defined by the user. This pa-
per discusses potential use cases of scene generation in creat-
ing environments for interactive narrative, virtual reality, and
other development opportunities.

1 Introduction
The Holodeck is a fictional virtual reality device in the tele-
vision show Star Trek, taking the form of a blank room
that generates interactive characters and objects dictated by
voice commands from people inside of it. It represents a
“holy grail” of interactive virtual reality (Spector 2013), has
been at the forefront of discussion of the role of AI in dig-
ital storytelling (Murray 2017), and has been the inspira-
tion for a number of projects integrating narrative with vi-
sual and audio generation (Swartout et al. 2006; Marks, Es-
tevez, and Connor 2014). These prior approaches have fo-
cused on graphics and visualization over the mechanisms of
scene generation, the processes with which interactive appli-
cations create spatial environments from user input criteria.

For example, a Holodeck-inspired scene generation sys-
tem could be used in the following scenario:

Sarah has an idea about a game about a detective. She
is thinking of the events in the game but having a hard time
imagining the space, so she uses the AI Holodeck to see how
the space would look. “Holodeck, give me a detective’s of-
fice”. The Holodeck renders an office using objects sourced
from a database. There is a desk and a chair, a window
behind the desk, and a shelf in the corner. She then thinks
that a desk lamp could make it more mysterious at night.
“Holodeck, put a lamp on the desk.” The Holodeck adds
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a lamp on the desk and a notebook beside it.” She thinks
“Yes, there should be a notebook on the desk!” But she feels
the metal desk looks really rough in the office. She says,
“Holodeck, give me a wooden desk”. The Holodeck ren-
ders the new wooden desk by adding “wooden” to its initial
database search of desks and replacing the original desk.

To facilitate the creation of scenes – and to populate them
– some semantically annotated datasets are currently avail-
able that categorize objects with relative positions and sizes
(Forbes and Choi 2017; Chang et al. 2015b).

Scene generation applications are able to parse these
datasets to create a “scene template”, a constrained mapping
of a scene’s objects and their basic spatial relationships be-
tween them (Chang, Savva, and Manning 2014). Systems
like these use Natural Language Processing pipelines, such
as the techniques in the CoreNLP library (Manning et al.
2014), to add items specified in a user’s input text to a scene.

However, the addition of elements that are both 1) unspec-
ified by a user and 2) gathered from semantically annotated
datasets in order to maintain relevance to the user-described
scene is missing from current research. Therefore, this pa-
per aims to address the following research question: Can
semantically annotated datasets be used to extract context-
informed scene templates in a text-to-scene generation ap-
plication, including items not specified in the input text?

In this paper, we introduce an AI Holodeck application.
This system draws from previous NLP and scene generation
work in order to create scenes with appropriate elements that
were not specified by the user. For example, if the user in-
puts a farm, then the application may populate the scene with
things commonly found in a farm such as cows, hay barrels,
and fields of crops. The AI Holodeck can be used in a va-
riety of scenarios: examples include visual story generation,
game design and prototyping, interior design sketching or
idea generation, and creating virtual or fantasy worlds.

The remainder of this paper explains how our system
draws from and synthesizes existing works in the domains
of natural language processing and scene generation, details
the design of our AI Holodeck application, and discusses po-
tential applications for integrating scenes generated by this
system with other interactive mediums.



2 Related Work
2.1 Scene Recognition
Scene graphs have been extensively used and explored in
the contexts of scene understanding and semantic image
captioning (Johnson et al. 2015). Representing objects in a
scene as nodes and their relationships as edges of graphs
makes it possible to both represent the content of scenes,
generate new scenes or manipulate scenes by modifying the
corresponding scene graph (Dhamo et al. 2020). Once the
objects and their relationships are learned, it can be used to
meaningfully place objects in the scene. Scene graphs can
be based on 3D scenes, reconstructed 3D scenes (Wald et al.
2020), images or text-image combinations.

Depending on the data format, different approaches have
been devised to extract the scene content. SceneGen focuses
on novel representations of scene graphs which embed posi-
tional and orientation information of a set of objects present
in a given room to achieve the most realistic placement (Ke-
shavarzi et al. 2020).

Other literature has investigated learning the implicit po-
sitional relationship between objects using transformers and
attention mechanisms. In SceneFormer (Wang, Yeshwanth,
and Nießner 2020), authors represent 3D objects and their
corresponding environment through a sequence of numbers
representing object category, location of objects in the envi-
ronment, object orientation and dimensions of the room.

A recent transformer based model CLIP connects text and
images to understand the image content. This discrimina-
tive model can be used to predict image content at scale by
encoding the image and caption in parallel (Radford et al.
2021). This model in combination with generative mod-
els can be used to generate scenes (Galatolo, Cimino, and
Vaglini 2021) but the effectiveness of this depends on the
level of precision and detail required for the generated scene.

We infer the object categories and their positional rela-
tionships directly from images for two reasons: 1) images
are more accessible than 3D models and there are more
datasets available. 2) images function as representations of
real world situations and convey properties that may be ma-
nipulated in 3D scenes such as messy desks or cluttered
rooms.

2.2 Text-to-Scene Generation
WordsEye (Coyne and Sproat 2001), as one of earlier works
on the text-to-scene generation, relies on explicit descrip-
tions following the template of objects and their position.
Requiring specific inputs in the format of “the [object] is
[distance] [position] the [object]” make for a rigid and un-
natural user experience.

Notating 3D datasets with natural language descriptions
is one approach to improve the unnatural experience com-
pared to the prior work (Chang et al. 2015a). However, the
text query is not the only contributing component to achieve
a natural user experience. SceneSeer breaks down the prob-
lem of text-to-scene generation into scene parsing, scene in-
ference, scene generation and scene interaction.

To avoid unnatural languages caused by strict input lan-
guage requirements like with WordsEye, they also bring ob-

jects that are not mentioned but are relevant to the mentioned
objects. They select inferred objects by searching the object
hierarchy and bringing the explicit object’s parent objects
with the highest probability (Chang et al. 2017). In addi-
tion to this, our approach considers the environment and ob-
jects that have the higher probability of co-appear with the
explicit objects in that specific context. Our focus is not to
produce the most sophisticated interior layout possible, but
rather to demonstrate a natural language-based scene gener-
ation system that creates appropriate scenes fitting the user’s
input contextually and thematically.

2.3 Scene Manipulation

We explored scene manipulation research from the perspec-
tives of content and interaction. In terms of content, research
on scene manipulation focuses on scene level manipulation
or object level manipulation which targets different purposes
such as object removal or image blending.

Recent research investigates scene manipulation through
updating the existing scene graph (Dhamo et al. 2020) and
regenerating the scene. Other approaches explore modify-
ing images using the semantic label maps or boundary maps
extracted from the image (Wang et al. 2018). However, due
to challenges presented by distinguishing different objects
of the same type (e.g. several different cars in the scene),
our approach is limited to single instances of an object in a
scene.

In terms of interaction, prior research explored different
methods or modes of interaction allowing users to manip-
ulate scenes. SceneSeer (Chang et al. 2017) enables users
to manipulate the scene with textual commands like “re-
place the bowl with a red lamp”. In Scribbling Speech (Yang
2018), a speech-to-image generation tool, users interact with
the interface through sound and modify the scene in a step by
step process using natural language. The placement of ob-
jects happens in the different depths of the scene. We use the
scene graph modification approach in our refactoring pro-
cess and users can modify the scene by adding new queries.

Unlike the above tools, which visually render a scene, our
approach also hosts the Holodeck component models in an
API-like format, allowing for integration into a variety of
applications such as Unity.

3 System Design

As seen in Figure 1, our Holodeck scene generator contains a
full pipeline to collect input text and form a visual represen-
tation of a scene. Our system generates a scene template for
any input text, determining objects and their locations in or-
der for them to be placed in a scene. Then, implicit connec-
tions between objects in our semantically annotated datasets
are used to add additional nodes to the scene template, cre-
ating a more vibrant scene. Objects are then mapped to a
graphical representation of a scene in sequence, while re-
solving any collisions between them. Finally, a lightweight
interface was created to allow for easily understood demon-
stration.



Figure 1: System flow for the AI Holodeck application.

3.1 Scene Templates
User input utterances are parsed through the CoreNLP li-
brary (Manning et al. 2014). The application separates sen-
tences into dependency trees comprised of subjects, objects,
and descriptors. Each subject and object are stored as a node,
and each descriptor is stored as a property of that node. De-
scriptors concerning relative position between objects (such
as “above” or “below”) are stored inside of properties spec-
ifying a cardinal direction. Phrases such as “on top of” and
“over” are all considered as the same “above” direction, and
phrases as “beside” or “by” are set to either “left” or “right”.
These connections form a scene template (Chang, Savva,
and Manning 2014), a collection of the various spatial re-
lations between objects in a scene. The scene template al-
lows all objects in a scene to be connected either directly or
through an intermediate object, such as in Figure 2.

CoreNLP has made it possible to use an in-depth depen-
dency parser, allowing for parsing complex sentence struc-
tures. However, we are also offering an offline version using
the NLTK library (Bird, Klein, and Loper 2009) to extract
objects, properties and their corresponding locations.

3.2 Implicit Nodes and Positional Relations
In order to create a more fleshed-out scene, our system adds
additional nodes which are not explicitly mentioned by the
user. Figure 3 provides an example of this concept. In this
example, the user is creating an office space and has used
the text “There is a couch and a table” as the first input.
Since the “couch” and “table” are explicitly mentioned by
the user, these nodes are created and used in the scene tem-
plate. The addition of these implicit nodes allows the system

Figure 2: An example scene template, with inputs “There is
a black cat on a wooden chair.” and “The chair is to the left
of the desk”.

to bring in other objects such as a rug, a window, and a book
because these are objects usually found near a couch or table
in an office. If the object mentioned by the user is not usu-
ally found in such environment, eg. “a horse in an office”,
our system searches for other objects that have a high prob-
ability of being found in an office space rather than objects
that are typically found near a horse.

With this method, the objects surrounding an object are
dependent on which environment that object is in. Figures 3
and 4 show this difference by using the same input sentence
“There is a couch and a table” in different environments of
“bedroom” and “library”.

Figure 3: An example of adding implicit nodes, with the in-
put sentence “There is a couch and a table.” being used to
create an office space.



Figure 4: An example of adding implicit nodes. with the in-
put sentence “There is a couch and a table.” being used to
create a library space.

Finally, our system prioritizes the explicitly defined posi-
tional relations over the implicit relations created by the sys-
tem. Figure 5 shows that a computer is implicitly brought
to the scene after 2 input sentences “There is a table” and
“There is a chair”. In Figure 6, the user adds the input “The
computer is on top of the table”, moving the computer to the
explicitly specified position.

Figure 5: An example of adding implicit nodes. A computer
is implicitly added to the scene.

Datasets Used for Extracting Implicit Relations In or-
der to create a dataset of potential positional relations, we
used the MIT Indoor Scenes Dataset (Quattoni and Torralba
2009), which contains 67 indoor categories and a total of
15620 annotated JPEG images. We sorted the objects found
in each indoor category based on the number of occurrences
in that category. Additionally, for each object found in a spe-

Figure 6: An example of prioritizing explicit relations to im-
plicit ones. The user requests the computer to be moved to
the top of the table.

cific category, we looked at the objects found in immediate
and far distance of the specified object. We divided these
surrounding objects based on their positional relation to the
specified object (eg. below, on top of) and sorted them based
on the number of occurrences. We exported this information
as a JSON file for our system’s use.

3.3 Scene Visualization
When generating a scene, the system places bounding boxes
representing each object in the scene template into a 3D
graph. It searches for sizes for each object in the ShapeNet-
Sem metadata. If none are found, they are replaced with de-
fault values for the output graph. The algorithm used to pri-
oritize object placement queues objects on the bottom of a
scene (objects with no “below” parameter), and recursively
adds objects in those objects’ “above” property on the graph,
stacking objects on top of each other.

As each object is added to the graph, collisions are de-
tected. Objects with lower priority (determined by their
place in the scene template) are shifted in the direction cor-
responding to their property name the until their bounding
boxes no longer overlap with the other object. For example,
if one object is “above” the other, it will be shifted vertically.

3.4 Interface Design
The AI Holodeck application uses a Tkinter interface 1 (see
Figure 7), activated from the command line.

The application opens a window with a menu for select-
ing a scene found in the Indoor Scenes dataset, a prompt for
entering in text or microphone input, and a display of the ob-
jects currently registered from the scene. When a user selects
the “Create Graph” button, objects found in the input text are
added to the list of objects. The scene is then displayed as a
movable, 3D matplotlib 2 graph in a separate window.

1https://docs.python.org/3/library/tkinter.html
2https://matplotlib.org/



The application allows for a number of command line ar-
guments. Mode selects either text or voice input. When vocal
input is activated, a recording button is added to the inter-
face beside the text box. Pressing this button activates a con-
tinuous microphone stream until a sentence is recognized,
which then populates the text field and automatically acti-
vates the graph creation function. Model selects either NLTK
(Loper and Bird 2002) or CoreNLP (Manning et al. 2014) as
a model to generate a dependency. The NLTK model is us-
able offline, while CoreNLP requires a separate command
line prompt to begin a server with an internet connection.
However, the CoreNLP model allows for more variety in
sentence structure. Examination of future iterations of this
system will include a comparison of error between the two
models.

Figure 7: User interface for the AI Holodeck application

4 Discussion
A fully realized AI Holodeck application will require a rel-
ative positioning and collision detection system that allows
for more spatial relationships than just “above”, “below”,
“left”, and “right”. In particular, size-dependent relation-
ships such as “inside” will allow generated scenes to have
a greater amount of realism and variety.

This system is also limited in the fidelity of the visual-
izations it is able to create. Objects are represented only as
a bounding box labeled with the object’s name. A more so-
phisticated visualization application would include indexing
of a database of 3D models, in order to dynamically popu-
late generated scenes with appropriate representations of the
objects inside.

Additionally, we plan on modifying the system to allow
for the manual removal and repositioning of objects. As
users correct the system output to fit the needs of the scene

they are trying to create, the stored database will update with
new spatial relationships and as such the system will be able
to learn from generated scenes.

Our system is robust in terms of affording future modifi-
cations. For example, in this phase of the project, we have
used the MIT dataset to extract possible positional rela-
tionships between various objects. These positional relation-
ships can be constantly modified/added to by using other
datasets not limited to the visual datasets, such as datasets of
narrative texts. Other techniques – such as deep learning –
could also be beneficial in removing our need for annotated
visual datasets by extracting spatial relations automatically
from other collections of images or narrative text.

The visualization of objects can be modified and extended
to various platforms. Our system provides a scene tem-
plate and graphical representation as formatted data and data
structures extracted from the input text, which can be used
by various platforms to create a detailed visualization. As
explained in the system design of this paper, this data in-
cludes the various objects in the scene, their properties, po-
sitional relations and center-points for placement of the ob-
jects in the scene. Hence, the visual modification could be ei-
ther in the form of changing visualization platform or in the
form of adding new objects to the dataset of 2D/3D models
used in these platforms.

5 Future Work
In future iterations of the system, we will include a sepa-
rate narrative text interpretation module. This module will be
comprised of a series of models trained on literature, which
will provide additional scene details given a user’s start-
ing input. The current implementation, for both the NLTK
and CoreNLP models, primarily uses simple sentences com-
prised of subject-object pairs in each clause. Training mod-
els on literature will enhance the system’s ability to capture
information from input sentences with a higher structural va-
riety.

Other prospective improvements in the software are doc-
umentation and user functionality to facilitate connections
to software such as Unity and virtual reality for integration
with game development. This addition will be used to ex-
plore manipulation of objects already in a scene, and the
placement or movement of objects with both input vocal
commands and gestures. Additionally, once objects are gen-
erated in a higher-fidelity graphical environment, modifiers
can be extracted from the input. These modifiers include ad-
jectives describing the scene and the objects within. They
will be added to the scene template and transmitted to the
external environment in order to generate visuals more ap-
propriate for the user query.

Future work will also include evaluation of the applica-
tion. The first evaluation will include separate analysis of
the NLP and scene generation models, in terms of precision
in the sentences they parse as well as the relevance of ob-
jects generated for a scene. System performance will also be
measured in terms of stability and framerate, while generat-
ing large amounts of objects. Finally, we will conduct user
studies measuring the strength of the system as a piece of
interactive technology as well as users’ experience.
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